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ABSTRACT

In this paper, we present an algorithm that generates high dynamic
range (HDR) images from multi-exposed low dynamic range (LDR)
stereo images. The vast majority of cameras in the market only cap-
ture a limited dynamic range of a scene. Our algorithm first com-
putes the disparity map between the stereo images. The disparity
map is used to compute the camera response function which in turn
results in the scene radiance maps. A refinement step for the dis-
parity map is then applied to eliminate edge artifacts in the final
HDR image. Existing methods generate HDR images of good qual-
ity for still or slow motion scenes, but give defects when the motion
is fast. Our algorithm can deal with images taken during fast motion
scenes and tolerate saturation and radiometric changes better than
other stereo matching algorithms.

Index Terms— High dynamic range imaging, stereo matching.

1. INTRODUCTION

Typical CCD or CMOS sensors can only capture between three and
four orders of magnitude of light intensity, whereas human eyes are
sensitive to around five orders of magnitude simultaneously, far ex-
ceeding the dynamic range that can be instantaneously captured by
these sensors. High dynamic range (HDR) imaging provides the ca-
pacity to represent the wider dynamic range of natural scenes to
which the human visual system (HVS) is sensitive in digital form.
However, existing sensor technology has not caught up to the de-
mands of HDR imaging. Few studios have so far managed to de-
velop HDR cameras, however, their solutions are expensive and re-
quire a long time to capture the full dynamic range. Therefore, there
is a need for low cost solutions that can generate HDR content using
only low dynamic range (LDR) cameras.

In recent years, several approaches have been developed to pro-
duce scenes with expanded dynamic ranges using LDR images. One
approach is to compute the inverse tone mapping curve from a given
LDR image and use this curve to stretch the dynamic range of the
LDR image [1]. The limitation of such an approach is that it cannot
recover information lost in saturated or coarsely quantized regions of
the LDR image. Other techniques capture multiple images of a static
scene at different exposures from a single camera and combine them
to form the HDR image [2–4]. The static scene requirement can be
removed by setting up sensors that have spatially varying pixel ex-
posures [5]. However, this setup increases the cost of such cameras
and it reduces the effective resolution of the resulting HDR image.

Another approach involves subjecting the frames in a video se-
quence to different exposures then using motion vectors to match
objects in each frame and combining the multi-exposed objects to
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Fig. 1. Our proposed scheme for HDR construction

expand the dynamic range [6]. However, this approach is computa-
tionally expensive and can lead to significant artifacts in high motion
scenes. Recently, adaptive normalized cross-correlation (ANCC)
was proposed to deal with illumination and camera variations [7].
It transforms the R, G, B channels to the log space to eliminate the
the effect of lighting difference. However, ANCC fails in those im-
age areas that are saturated [7].

In this paper, we are interested in a multi-exposure stereo camera
setup to HDR image generation. Our approach is inspired by the
work in [8] and can be summarized using the following stages:

1. Multi-exposed stereo images are captured using identical
cameras placed adjacent to each other on a horizontal line.

2. Stereo matching is then used to find a disparity map that
matches each pixel in one image to the corresponding pixel
in another image.

3. A subset of the matched pixels is used to generate the camera
response function which in turn is used to generate the scene
radiance map for each view with an expanded dynamic range.

4. The disparity map is refined by performing a second stereo
matching stage using the radiance maps.

Our approach improves on that in [8] through the disparity refine-
ment stage. Consequently, the resulting HDR images exhibit fewer
artifacts and encode a wider dynamic range than existing techniques.
Fig. 1 illustrates a block diagram of our proposed scheme.

The remainder of this paper is organized as follows. Section
2 presents our proposed stereo matching algorithm that generates an
initial disparity map and consequently the camera response function.
In section 3 we propose a disparity refinement algorithm which en-
hances the stereo matching and presents an error HDR composite
image. Finally, we present our experiment results in section 4 and
draw our conclusions in section 5.

2. STEREO MATCHING

2.1. Overview

The quality of the constructed HDR image depends primarily on the
success of the stereo matching scheme used. Stereo matching is a
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Fig. 2. Multi-exposed input LDR images: Dolls (top), Arts (below).

field in computer vision that has matured over the last few decades.
There are numerous algorithms which perform well on images of the
same illumination and exposure. However, most of these algorithms
fail on images with large radiometric variations as a result of changes
in exposure and lighting [9] such as the images in Fig. 2.

Stereo matching algorithms share a common assumption that the
disparity map between two rectified images can be modeled as a
Markov random field (MRF). The matching problem is then posed
as a Bayesian labeling problem in which the optimal labels f (or
pixel disparities in our case) are the values that minimize an energy
functional E(f) [10]. The energy functional emerges from the max-
imum a posteriori (MAP) objective composed of a pixel dissimilarity
term Ed(f) and a smoothness term Es(f) which correspond to the
MRF likelihood and the MRF prior, respectively. The best disparity
map f∗ is therefore obtained by solving the following:

f∗ = arg min
f∈F

Ed(f) + Es(f, N), (1)

where F is the set of feasible disparities from which f is chosen,
and N defines a neighborhood window. In what follows, we discuss
how the imaging model and the differences in lighting and exposure
affects our choice of the energy terms Ed and Es.

2.2. Imaging model

Imaging models are used to determine the scene radiance from the
measured pixel data. Different imaging models have been presented
in the literature. In this paper, we introduce two models: the gamma
correction model and the polynomial model. We first use the gamma
correction model to find an initial disparity estimate and then to find
the polynomial camera response function. Next we estimate the
scene radiance from the polynomial model to refine our initial stereo
matching estimate.

2.2.1. Gamma correction

Every camera measures and quantizes an estimate of the scene radi-
ance R. In a stereo setup, assuming the captured scene is Lamber-
tian, the radiance should be the same in both images and should only
be subject to a lateral shift in pixel locations. The image intensities
recorded by a camera can be modeled as scaled gamma corrections
of the scene radiance R. Therefore, we characterize the imaging
model by the following expressions [3]:

Il = Rγ , Ir = (eR)γ . (2)

where Il and Ir are the left and right image intensities, e is the expo-
sure ratio between the left and right images, and γ is the correction

factor employed by the camera response curve. However, in really,
the radiance received by the two cameras is not exactly the same.
We use cost functions described below which are robust to such dif-
ferences.

2.2.2. Polynomial camera response

In [3], different camera response functions were compared and it
was shown that the response curve can be modeled by an nth order
polynomial function of the measured pixel values I . The study also
showed that it is sufficient to use n ≤ 4 to build an accurate model.
In the stereo matching setup, only left and right image pixels that
have the same disparity values (valid pixels) are used to find the
camera response function. The polynomial coefficients cn are then
found by minimizing the following cost:

J(cn) =
∑
p∈P

[∑
n

cnIn
l (p)− e

∑
n

cnIn
r (p)

]2

(3)

where P is the set of valid pixels, cn are the polynomial coefficients,
and e is the exposure ratio between the two images.

2.3. Computing the disparity map

The disparity map f characterizes the lateral displacement by an in-
teger number of pixels of an object in the left image compared to
its position in the right image. We minimize the energy function
E(f) defined in (1) to compute it. However, we must first define the
dissimilarity term Ed(f) and the smoothness term Es(f, N).

2.3.1. Pixel dissimilarity

We choose the normalized cross correlation (NCC) as the pixel simi-
larity measure. In [8,9], it is shown that NCC is the best cost function
to cope with exposure variations. For a pixel p and corresponding
disparity fp, NCC is given by the following expression:

NCC(p, fp) =

∑
q∈W (p)

wlwr Ĩl(q)Ĩr(q + fp)

√
|wlĨl(p)|2

√
|wr Ĩr(p + fp)|2

, (4)

where fp ∈ F is the disparity of pixel p, wl and wr are bilateral
weights defined over a window W (p) centered at p in the left image

and (p + fp) in the right image respectively, and Ĩl and Ĩr are func-
tions of the left and right image pixel values which we define below.
The bilateral weights for a pixel t in a window W (p) are given by
the following expression:

w(t) = exp

[
−‖p− t‖2

2σ2
d

− ‖I
′
(t)− I

′
(p)‖2

2σ2
s

]
, (5)

where σs and σr are the respective space and range smoothing pa-

rameters, and I
′

= logI = γloge + γlogR is the log space pixel
intensity. Operating on the log space of the image removes the effect
of exposure from the bilateral weights.

The NCC is effective at finding similarities in highly textured
surfaces. Therefore, we subtract the low frequency image compo-
nents before performing the similarity matching. The functions Ĩ
are then chosen so that:

Ĩl = I
′
l −

∑
t∈W (p)

w(t)I
′
l∑

t∈W (p)

w(t)
= γ

⎡
⎢⎣log R−

∑
t∈W (p)

w(t) log R

∑
t∈W (p)

w(t)

⎤
⎥⎦ . (6)
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Similarly,

Ĩr = γ

⎡
⎢⎣(log e + log R)−

∑
t∈W (p)

w(t)(log e + log R)

∑
t∈W (p)

w(t)

⎤
⎥⎦

= γ

⎡
⎢⎣log R−

∑
t∈W (p)

w(t) log R

∑
t∈W (p)

w(t)

⎤
⎥⎦ . (7)

Equations (6) and (7) show that the NCC when applied to Ĩ is unaf-
fected by γ and e. The dissimilarity term can then be expressed as
follows:

Ed(f) =
∑

p

Dp(fp) =
∑

p

(1−NCC(p, fp)) . (8)

2.3.2. Disparity smoothness

The disparity map is assumed to be smooth within solid objects since
these objects should have a constant lateral shift between the left and
right images. Therefore, we express the smoothness term Es(f, N)
in terms of a total variation function Vp,q regularized by weights
λ(p, q) which are calculated using the perceptually uniform CIELab
color space.

Denote by q ∈ N(p) the pixel indices that fall within a neigh-
borhood window N centered at pixel p. The variation term Vp,q is
expressed as follows:

Vp,q(fp, fq) = min(|fp − fq|2, Vmax), (9)

where Vmax is the maximum upper bound, and the regularizing pa-
rameter λ(p, q) is given by:

λ(p, q) = exp

[
− ‖p− q‖2

2σ2
s

− ‖IL(p)− IL(q)‖2
2σ2

r

−‖Ia(p)− Ia(q)‖2
2σ2

r

− ‖Ib(p)− Ib(q)‖2
2σ2

r

]
,(10)

where IL, Ia, Ib are the CIELab color space components.
Since the CIELab components are perceptually uniform within

an object, λ(p, q) ensures that smoothness is imposed within an ob-
ject and is disregarded at object boundaries. Instead of segmenting
images using computationally intensive algorithms, this grouping
can be coded using pre-calculated bilateral weights of local support
areas [11]. The final smoothness term is expressed as follows:

Es(f, N) =
∑

p

∑
q∈N(p)

λ(p, q)Vp,q. (11)

2.3.3. Initial disparity and camera response

The energy function given in (1) is then minimized using the graph
cut algorithm [12, 13] to produce the initial disparity estimate. This
disparity map contains errors mainly in over-exposed and under-
exposed regions of the images. Therefore, we calculate two disparity
maps for each of the left and right images and cross validate the re-
sulting maps. The pixels that are matched in the two disparity maps
are treated as the valid disparities. The remaining pixels are marked
as erroneous and represented by black pixels for further correction.
Fig. 3 shows the initial disparity map obtained after matching the
left and right disparities for two images: Arts and Dolls.

The matched pixels in the two disparity maps are considered as
valid disparity values to compute the camera response function using
the algorithm in [3]. This camera response function is modeled by
a polynomial function. The coefficients cn are found by minimizing
the cost function given by (3).

3. ERROR CORRECTION

After finding the coefficients of the polynomial camera response
function, the left and right images are converted to the radiance space
R̃ in which the corresponding pixels should have the same value. We
use the radiance maps to correct the erroneous pixels identified in the
initial disparity map by interpolating between the valid disparities.

We formulate this interpolation problem as another minimiza-
tion of an energy function (1), but with a different pixel dissimilarity
cost Ed(f). Let f̃p be the initial disparity estimate of pixel p. For
valid pixels in the initial disparity map:

Dp(fp) =

{
0, if fp = f̃p

K, if fp �= f̃p

, (12)

where K is a large number.

For the erroneous pixels in the initial disparity map:

Dp(fp) = ‖R̃l(p)− R̃r(p + fp)‖+ Cp(fp, W (p), R̃l, R̃r), (13)

where Cp(fp, W (p), R̃l, R̃r) is a cost function that calculates the
Hamming distance between pixels p and p + fp after applying the
Census transform [14] over windows W (p), W (p + fp) in the left

and right radiance estimates R̃l, R̃r , respectively.

Notice that the new dissimilarity cost function Dp for erroneous
pixels is composed of two norms. The first norm ensures a smooth
transition across object boundaries in the radiance map, while the
second norm ensures that pixel locations are accurately matched.
However, strict disparity matching can cause edge artifacts in the
final HDR image which result from occlusions in the stereo setup.
Therefore, we enforce the smooth transitioning in the radiance map
to remove any possible artifacts that may arise. Finally, in order
to speed up the minimization process, we bound the search range
of feasible disparity values by the minimum fv,min and maximum
fv,max valid disparity values found in the initial disparity estimate,
such that f : fv,min ≤ f ≤ fv,max. Once the depth map and the left
and right radiance maps are computed, the value of a pixel in the
HDR image is calculated as a weighted average of the correspond-
ing pixels in the two LDR images [3].

4. EXPERIMENTAL RESULTS

We tested our algorithm using stereo images provided by Middle-
bury College [15]. In this paper, due to space limitation, we only
present results for the Arts and Dolls, shown in Fig. 2. In our exper-
iments, the size of the window in the cost function and the neighbor-
hood in the smooth term are (5 × 5) pixels. The standard deviation
σs and σr in the bilateral weights are 2.6 and 14.0 when computing
weighted NCC and 2.4 and 16.0 when calculating Vp,q . The values
of the variables are determined to be optimal for majority of LDR
images after several experiments.

Fig. 3 shows the reference disparity maps and the final disparity
maps. If the images contain scattered saturated regions of small ar-
eas, such as in Dolls, the disparity maps obtained by our algorithm
follow closely the reference map. If there are large saturated regions
such as in Arts, the final disparity map has discernable difference
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Fig. 3. The first row shows the reference disparity maps. The second
and third row shows the initial and final disparity maps.

Fig. 4. Tone-mapped reconstructed HDR images of arts and dolls.

from the reference. However, the errors have little effect on the fi-
nal HDR images. The tone-mapped HDR images shown in Fig. 4
are obtained by applying tone-mapping operator in [16] Compared
to the disparity maps for Arts shown in [8] and [9], the disparity
map we computed has less error and better smoothness. The root
mean square error (RMSE) and percentage of invalid pixels in our
calculated disparity maps are presented in Table 1.

5. CONCLUSION
In this paper, we presented an algorithm that calculates the disparity
map of two differently exposed LDR images to generate HDR im-
ages. Compared to existing methods, our algorithm can better cope
with changes in exposure and can deal with the existence of satu-
rated regions in images. Moreover, our algorithm can be used with
fast motion scenes since the proposed setup captures images with
different exposures at the same instance, no temporal adjustment is
required. Every pair of frames can be treated as images of a static
scene and use our algorithm to generate the HDR image.
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